

SUPPLEMENT

Nutrition and the Developing Brain

Miami Neonatology 2016 – Annual International Conference

Learning Objectives

At the conclusion of this activity, participants should be better able to:

- Examine how the timing of nutrient deficiencies affects brain development
- Recognize early correction of nutritional deficiencies after birth is essential to protect the developing brain

Faculty

Michael K. Georgieff, MD

Professor of Pediatrics and Child Development Director, Center for Neurobehavioral Development University of Minnesota School of Medicine Minneapolis, Minnesota

Case Presentation

A 37-year-old African American woman presents 7 weeks after her last menstrual period, and after a positive home pregnancy test, for a prenatal exam. At her last checkup 1 year ago, her BMI was 26, she was borderline hypertensive (124 systolic/82 diastolic), and prediabetic (fasting glucose 118 mg/dL). She stopped smoking during her first pregnancy, which ended when she delivered a healthy, term, baby 5 years ago.

Discussion Items

Informed by the video content, reflect individually or discuss as a group the following questions related to this case and your clinical practice:

- What nutritional risks would you consider this fetus to be at risk for during the prenatal period? What risks would this infant be at during the post-natal period?
- Do you have a plan for managing obesity in pregnant women?
- Do you have a plan for controlling hypertension or diabetes/prediabetes discovered during pregnancy?
- What criteria do you use to evaluate pregnant women for possible micronutrient deficiencies?
- Do you have a protocol for assessing and correcting nutritional deficiencies that are specific for preterm infants?
- What nutritional supplements do you plan on providing for preterm infants who cannot be breast-fed?

Why Nutrition of the Preterm Matters

Long-Term Consequences of Adverse Early Nutrition and Growth

Suggested Readings and Resources

- 1. Cusick SE, Georgieff MK, Nutrient supplementation and neurodevelopment: timing is the key. *Arch Pediatr Adolesc Med.* 2012;166(5):481-482.
- 2. Georgieff MK. The effect of maternal diabetes during pregnancy on the neurodevelopment of offspring. *Minn Med.* 2006;89(3):44-47.
- 3. Georgieff MK. Long-term brain and behavioral consequences of early iron deficiency. *Nutr Rev.* 2011;69(suppl 1):S43-48.
- 4. Georgieff MK, Brunette KE, Tran PV. Early life nutrition and neural plasticity. *Dev Psychopathol.* 2015;27(2):411-423.
- 5. Hay WW Jr. Care of the infant of the diabetic mother. *Curr Diab Rep.* 2012;12(1):4-15.
- 6. Hernell O, et al. Summary of current recommendations on iron provision and monitoring of iron status for breastfed and formula-fed infants in resource-rich and resource-constrained countries. *J Pediatr.* 2015;167(suppl 4):S40-47.
- 7. Jabes A, et al. Functional and anatomic consequences of diabetic pregnancy on memory in ten-yearold children. *J Dev Behav Pediatr.* 2015;36(7):529-535.
- 8. Lamberti LM, Fischer Walker CL, Black RE. Zinc deficiency in childhood and pregnancy: Evidence for intervention effects and program responses. *World Rev Nutr Diet.* 2016;115:125-133.
- 9. Makrides M, et al. Improving the neurodevelopmental outcomes of low-birthweight infants. *Nestle Nutr Inst Workshop Ser.* 2013;74:211-221.
- 10. Ode KL, et al. Decelerated early growth in infants of overweight and obese mothers. *J Pediatr.* 2012;161(6):1028-1034.
- Petry N, et al. The effect of low dose iron and zinc intake on child micronutrient status and development during the first 1000 days of life: A systematic review and meta-analysis. *Nutrients*. 2016;8(12).
- 12. Ramel SE, Georgieff MK. Preterm nutrition and the brain. *World Rev Nutr Diet.* 2014;110:190-200.
- 13. Rao R, Georgieff MK. Iron therapy for preterm infants. *Clin Perinatol.* 2009;36(1):27-42.
- 14. Riggins T, et al. Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. *Dev Neuropsychol.* 2009;34(6):762-779.
- 15. Steinmacher J, et al. Randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams: neurocognitive development at 5.3 years' corrected age. *Pediatrics.* 2007;120(3):538-546.
- 16. Terrin G, et al. Zinc in early life: A key element in the fetus and preterm neonate. *Nutrients.* 2015;7(12):10427-10446.